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I. Introduction 

In recent papers [ 1-25] various techniques are employed to interpret photoelectron 
spectra. Koopmans '  theorem [26] (the negative value of the Hartree-Fock orbital 
energy - eh), which is often used to interpret the ionization potentials does not serve 
as an appropriate tool in some cases. 

The true ionization potential (IH) is given by 

IH= -eh-R+C (1) 

where R stands for reorganization and C for correlation effects, respectively. 
Usually these effects cancel each other almost exactly and Koopmans '  theorem is a 
good approximation to ionization potential. For some cases this cancellation is not 
exact and the effects which are known as Koopmans'  defect and breakdown of 
Koopmans '  theorem appear. In order to include the reorganization and correlation 
effects we have to go beyond the Hartree-Fock (HF) approximation. The techniques 
based on Green's functions [ 1-11 ], many-body Rayleigh-Schr6dinger perturbation 
theory (MB-RSPT) [ 12, 13], the equation of motion method [ 14-18], the natural 

* This paper is dedicated to the memory of our friends and colleagues Dr. Jarka Surfi and Dr. Marta 
12ernayovfi who died in a plane crash on the 28th of July 1976 in Bratislava. 
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transition orbitals method [19, 20], the ordinary Rayleigh-Schr6dinger per- 
turbation theory [21, 22], the superoperator technique [23], the density matrices 
and natural functions [24] and PNO-CI method [25] were used to calculate the 
corrections to Koopmans '  theorem which are due to reorganization and correlation 
effects. These different approaches are all by no means distinct, as numerous 
interrelationships among them may be demonstrated but each provides its own 
viewpoint which suggests different computational characteristics. Among the 
mentioned methods the Green's function approach [6-10] seems to be the most 
elegant and effective one and it seems natural that it is this approach to which all 
other approaches are compared. The aim of this paper is to perform the calculation 
of vertical ionization potentials (VIP's) by time-independent MB-RSPT [ 12] and to 
demonstrate that this method leads to the same results as the Green's function 
approach. We would like to show in this paper also that the Rayleigh-Schr6dinger 
perturbation expressions for direct calculation of the ionization potentials may be 
obtained in a rather simple way without involvement of the Green's function 
formalism. For  the calculations we have chosen the same systems as studied by the 
Green's function method [8, 9] and essentially the same basis. We want to compare 
our direct calculation of 2al ionization potential of H/O molecule with the Green's 
function approach since this state does not belong to the X _ 1, X + 1 interval [8] as 
well as to test the effect of inclusion of all virtual orbitals in perturbation expansion. 

The diagrammatic technique which represents a very powerful tool to study the 
correlation energy to various orders and various forms of MB-RSPT (different 
partitioning of the Hamiltonian) is used for ground state [ 2 2 3 0 ]  as well as for 
excitation processes [29, 30, 38]. This technique gives us the possibility to see the 
dominant "diagrammatic" contributions which can then be summed up to all orders 
of perturbation theory. To study the corrections, to Koopmans '  ionization 
potentials from this point of view is also the aim of this paper. 

2. Theory 

The general features of the theory for calculation of ionization potentials by time- 
independent MB-RSPT were formulated in our paper [121. For  the completeness 
we briefly recapitulate the theory here in its very simple form. The formulation of the 
theory in our paper [ 12] was given in quasi-degenerate MB-RSPT. The formulation 
in this paper we recapitulate for simplicity in non-degenerate time-independent MB- 
RSPT. We have used a similar formulation as that demonstrated in [30], which is 
equivalent to the case P0 = I ~ ) ( ~ u ]  (Eq. (6) in Ref. [12]) of our quasi-degenerate 
formulation [-12]. 

Paldus and Ci~ek [38] used Green's function approach to obtain the explicit 
expressions for excitation energies. As they demonstrated in [30, 38] Green's 
function approach yields the same expressions for the excitation energies as does the 
time-independent MB-RSPT. They present the explicit formulae to the third order 
of perturbation expansion for the excitation energies. As is demonstrated in 
[ 13, 30, 38] the ionization potentials are implicitly included in excitation energies. 
This can be demonstrated also diagrammatically because our diagrams for 
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ionization potentials in Fig. 1 represent the part of the selfenergy diagrams of the 
two-particle Green's function [30, 38J. To be more specific all our third order 
diagrams are simply the time-versions of the diagrams 12, 13 and 14 in [38]. There 
exists the one to one correspondence between the third order diagrams A l-A6, C 1- 
C6 and D1-D6 from [10] and our diagrams 1-18 in Fig. 1. Our time-independent 
MB-RSPT approach to ionization potentials is the same as with time-independent 
R-S Green's function approach. Cederbaum's approach is the Green's function 
technique in the Brillouin-Wigner perturbative form. 

What is commonly referred to as MB-RSPT is developed by occupation number 
representation, Wick's theorem and adiabatic approximation which are used to give 
the diagrammatic description of ordinary time-independent Rayleigh-Schr6dinger 
perturbation theory. Brueckner [31 ] showed that the non-physical terms cancelled 
up to fourth order and the generalization to all orders was effected by Goldstone 
[32]. This is known as the linked cluster theorem which as a consequence provides 
the rules for drawing the diagrams. Using this formalism the whole problem of 
correctly obtaining the terms of the perturbation series is reduced to drawing a set of 
topologically distinct diagrams according to some rules. From each diagram we can 
write down the mathematical expression. The MB-RSPT is described in many 
textbooks (see e.g. Ref. [33]). Here we refer the reader to the excellent article by 
Paldus and 12i~ek [30] where for the first time the complete description of time- 
independent MB-RSPT is given. 

Let us assume that a perturbed Hamiltonian of an atomic or molecular system may 
be written as 

H=eo + Ho + W (2) 

and the perturbed Schr6dinger equation is 

H l ~ )  = E I ~ )  (3) 

and e o is the scalar quantity, H o is an unperturbed Hamiltonian and W is a 
perturbation, I~)  is the exact wave function of the system. In the second 
quantization formalism these operators have the form 

Ho = Z eA X+ XA (4) 
A 

l 
W=- Z (ABIv[CD)X3X~XDXc--Z {AIgIB)X]XB 

2 ABCD AB 

where X + and X~ are creation and annihilation operators defined on the 
orthonormal set of spinorbitals which are the solution of the one-particle 
eigenproblem (h+g)[A)=eA]A). One of the basic concepts of MB-RSPT is a 
properly preselected non-degenerate "core" state vector [34] 

14o)= 1-[ xJI0) (5) 
AEFS 

Ho]~o)=E~o~ E(o ~ ~ eA (6) 
A~FS 
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where the index A runs over all occupied orbitals taken from the Fermi sea one- 
particle functions, and 10> is the normalized vacuum state vector. Using the Wick 
theorem the Hamiltonian can be rewritten in the so called normal form 

H =  <~olnl~0> + ~ (AIfIB)N[X,~XB] 
AB 

+ 

where <~olHl~o> is the scalar quantity representing the restricted HF ground state 
energy,f  is the well known HF operator and N[ .  �9 �9 ] is the normal product defined 
with respect to spinorbitals {IA>, IB>,.. .}, I~o> is the HF Slater determinant for the 
ground state. Let us redefine our unperturbed and perturbed Hamiltonian in the 
following way 

Ko = Ho - <~olaol~o> (8) 

K =  H -  <~olHl~o> (9) 

We have then for the perturbed and unperturbed eigenproblem, respectively 

KiWi> = k d ~ , >  (10) 

Kol~> = xzl~z> (11) 

The state I~i> is the initial state to I~i> and we assume that I~i>-~l~i> if the 
perturbation is switched on. The perturbation expansion for the quantity k i is given 

ki=rc,+ ~, <~[W[Qi(W+~i-k~)]'lr (12) 
t 1 = 0  

where 

Q,= ~, I%.><%1 (13) 
i tr - -  tcj 

(1 ~ i) 

Let us study the ionized state which we shall describe by [ ~P~) >. Of course this will 
depend on the initial state of the neutral and charged system. Here we shall limit 
ourselves to such a state [ ~ )  > for which the initial state ] ~ > is obtained from the 
neutral closed-shell ground state in which we annihilate one particle. The 
corresponding eigenvalue problems are 

K I ~ >  =ki] ~ ; >  (14) 

Kol~b> = K;I4~b> (15) 

The state I~)> we shall realize in the following way 

1~5> = x.14'o > (16) 

The vertical ionization potential IH is given by 

I , =  k'o - ko (17) 
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In the present article we shall study the ionization potentials up to the third order of 
perturbation expansion. Therefore Eq. (17) can be rewritten using (12) in the form 

In=  <~{~lgol~b> + <~bl WI~b> + <~,1WO'o W[#{~> 

+ ( ~ l  WO'o WO'o W l ~ )  - (~olgol~o) - (~ol W[~o) 

- ( ~ o 1 W Q o  Wl~o) - (r WQo WQo W [ ~ o )  (18) 
Since our Hamiltonian H (7) does not depend on the number of particles the 
Hamiltonian in (10) and (11) is the same as in (14) and (15). Using Eqs. (8) and (16) 
we can write Eq. (18) in the form 

In= { ( ~olX+ KoXnlg'o) + (~olX~ WQ'o WXn[q~o) 

(~olX~ WO'o WQ'o WX H[~ O ) } -- {(~01WQo Wl~o) 

+ (~o] WQoWQo W[~o)} (19) 

The simplest separation of the Hamiltonian (7) to the form (2) i.e. to the 
unperturbed Hamiltonian and the perturbation is as follows 

Ho = Z (AIfIB)N[X~Xs] (20) 
A,B 

W=I- Z (ABIv[CD)N[XjX+X~Xc] (21) 
2 A,B,C,D 

and the scalar quantity eo we identify with (~olHl~o).  Let us assume that the 
spinorbitals {[A) ,  I B ) . -  .} are the eigenfunctions of the HF operator 

f lA) = ~AIA) (22) 

Then the unperturbed Hamiltonian has a diagonal form 

H o = • eAN IX + XA] (23) 
A 

The individual terms of Eq. (19) can be calculated diagrammatically. The first term 
on the right hand side of (19) gives us - eh which is well known Koopmans'  theorem. 
Formally, we can write Eq. (19) in the following way 

I,t=-~h+ " > > . - (24) 

The first term on the right hand side of (24) represents Koopmans'  theorem, the 
second term represents the second and third terms from the right hand side of (19) 
and the third term of (24) represents the last two terms of (19). As was shown in [ 12] 
the second term of the right hand side of (24) which represents the correlation 
correction to ionized state can be decomposed into two parts, namely to the 
correlation correction to the parent state plus the remaining terms. We can formally 
represent this decomposition as 

H H 

, > �9 (25) 
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Fig. 1. The second and third order Hugenholtz's diagrams for vertical ionization potentials 
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where the first part on the right hand side of (25) is the correlation correction of the 
parent state and the second part is the remaining term. Due to this fact in Eq. (24) we 
can formally cancel those terms which contribute equally at least up to the third 
order of perturbation theory to the correlation correction of the ionized state and 
parent state. Eq. (24) can then be simply written as 

In=  - e l l +  > > (26) 

The second term on the right hand side of Eq. (26) can be represented 
diagrammatically. In Fig. 1 we present the second and third order Hugenholtz's 
diagrams for this term from which explicit expression for Eq. (26) can be obtained. 

3. Application to H20  and Ne 

We have applied the theory described in the previous part of this paper to the H20  
molecule and the Ne atom. We have selected these systems because excellent 
calculations were done by Cederbaum et al. [8, 93 using the Green's function 
technique on H20  and Ne. The VIP's are defined as the difference between potential 
curves at the equilibrium geometry of the ground state. Therefore, to compare them 
with experiment they should be corrected for vibrational effects. The corrected 
experimental VIP's are taken from [25]. The SCF calculations were performed by 
Polyatom 2 program (QCPE 199). The wavefunction for H 2 0  was computed with a 
contracted Gaussian basis [4s2pld /2s lp] .  Exponents and contraction coefficients 
for oxygen were chosen according to Dunning [-35] and that for hydrogen 
(unscaled) according to Huzinaga [36]. Exponents of polarization functions are the 
same as those used by Cederbaum et aI., ~e(O) = 1.0 and %(H) = 0.75 [8]. We have 
used essentially the experimental geometry, Ron=0.9572 A,, <~HOH = 104.5, the 
Cartesian coordinates H1, H 2 (0.0; + 1.430429; 1.107157) a.u. The energy, Esc F = 
- 75.042661, is very close to the value given by Cederbaum et al. [8]. The differences 
in orbital energies are not larger than 0.01 eV. The results are shown in Table 1. The 
basis set for Ne atom is exactly the same as that used by Cederbaum and yon Niessen 
[-9]. It consisted of Cartesian Gaussian functions, 10 functions of s-type and 6 of p- 
type contracted to 5 functions of s-type and 3 of p-type. The exponential parameters 
and contraction coefficients are taken from [36]. The calculated SCF energy is Esc v 
= - 128.5312347 a.u. The results of the calculation for Ne are given in Table 2. The 
contributions from individual diagrams for H20  and Ne are presented in Table 3. 

4. Discussion 

To open the discussion we stress that our calculation of ionization potentials is a 
direct and not an iterative one. Let us Gompare the results for the H20 molecule 
obtained by MB-RSPT with a Green's function calculation. We can see from Table 1 
comparing A and B (in both cases 11 virtual MO's were taken into account) that 
the results performed by MB-RSPT are in nice agreement with the Green's function 
technique [8]. The significant difference is only for the 2al case for which the value 
given by MB-RSPT is about 0.65 eV closer to experiment than that given by Green's 
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Table 1. Vertical ionization potentials of H20a 

I. HubaE and M. Urban 

Calcula- Koopmans Exper. c ExperS, d 
State tion b - e  / Je  (2) Ae ~3) e ~3) VIP cor. 

2al A 36.55 -3 .62  2.17 35.10 32.2 
B 36.56 - 4.57 2.47 34.45 
C 36.56 -4 .87  1.98 33.66 
D 37.07 -3 .69  1.83 35.22 

lb 2 A 19.30 -1 .60  1.52 19.22 18.55 18.72+0.22 
B 19.29 - 1.77 1.65 19.17 
C 19.29 - 1.49 1.39 19.19 
D 19.53 - 1.60 1.50 19.42 

3a 1 A 15.67 -2 .49  2.00 15.18 14.73 14.83_+0.11 
B 15.66 -2 .76  2.23 15.13 
C 15.66 -2 .46  1.91 15.12 
D t5.44 -2 .82  2.12 14.74 

lbl A 13.67 -2 .75  2.11 13.03 12.61 12.78 
B 13.66 -3 .12  2.37 12.91 
C 13.66 -2.91 2.05 12.79 
D 13.79 -3.31 2.27 12.75 

a Energies in eV, 1 a.u. =27.21 eV. Ae ~z) and Aa ~3) are corrections to second and third order, 
respectively, of perturbation theory, e(3) is the final value of VIP with second and third order 
corrections to Koopmans '  theorem. 

b Calculation A results of Cederbaum et al. [8], using Green's functions. Basis 
[4s2p ld/2s lp]. Four highest occupied and eleven lowest unoccupied molecular orbitals were 
included. Calculation B- th i s  work, with MB-RSPT. Basis [4s2pld/2slp]. Four highest 
occupied and eleven unoccupied molecular orbitals were included. 
Calculation C-s imilar  to the calculation B, but all 21 unoccupied molecular orbitals were 
included. 
Calculation D -  this work, with MB-RSPT. Basis [,4s2p/2s], Ref. [-35]. All occupied and all 
unoccupied molecular orbitals were included. 

c Ref. [8]. 
d Ref. [25], ionization potentials, corrected for vibrational effects. 

Table 2. Vertical ionization potentials in eV of Ne calculated with [-5s3p] basis a 

Calcula- Koopmans E~per. 
State tion b - e  A8 (2) de (3) e (3) [9] 

ls A 891.67 -25.65 869.04 
B 891.88 -34.70 22.14 879.32 

2s A 52.36 - 4.09 48.47 
B 52.37 -4 .50  3.19 51.06 

2p A 23.13 -3.41 2.51 22.24 21.60 
B 23.14 - 3.75 2.70 22.09 

a 1 a.u. =27.21 eV. Ag t2) and Ae t3) are corrections to second and third order, 
respectively, of perturbation theory, e(3) is the final value of VIP with second 
and third order corrections to Koopmans '  theorem. 

b Calculation A-resu l t s  of Cederbaum and yon Niessen [9]. Calculation B -  
our results. All occupied and all virtual molecular orbitals were included. 
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Table 3. Contributions to the VIP of H20 and Ne from the individual diagrams. 
All virtual orbitals of H20 are included (calculation C of Table 1). Energy values 
are given in a.u. (1 a.u. =27.21 eV). 

H20 Ne 

Diagram 2a 1 lb2 3al lbl 2p 

Sec. ord. 
1 -0.2122 -0.1134 -0.1457 -0.1594 -0.1760 
2 0.0333 0.0586 0.0554 0.0523 0.0380 
Third ord. 
1 - 0.1740 -0.0406 -0.0542 -0.0617 -0.0550 
2 0.1667 0.0488 0.0659 0.0744 0.0843 
3 = 6 0.0563 0.0260 0.0395 0.0437 0.0433 
4=  5 0.0103 0.0081 0.0010 0.0111 0.0081 
7 =9  -0.0549 -0.0428 -0.0516 - 0.0552 -0.0489 
8 -0.0634 -0.0583 -0.0596 -0.0613 -0.0361 
10= 12 0.0663 0.0522 0.0616 0.0646 0.0700 
11 0.0621 0.0546 0.0567 0.0589 0.0365 
13 - 0.0055 -0.0123 -0.0106 - 0.0089 -0.0052 
14 0.0064 0.0130 0.0115 0.0097 0.0052 
15 = 16 -0.0123 -0.0220 - 0.0209 - 0.0199 -0.0130 
17= 18 0.0146 0.0245 0.0221 0.0200 0.0101 

functions. Here we have to mention that in [8] only the poles of Green's function 
which are situated far from the poles of the self-energy part, i.e. which belong to the 
interval (~_ l, 27,+ 1) are investigated. For  the case 2al this condition is not satisfied. 
As is mentioned in 1-8] these results can be improved considering all the virtual 
orbitals. For  numerical reasons Cederbaum et al. 1-8] did not take into account all 
virtual orbitals. In our calculations we have included all 21 virtual orbitals. The 
results show (calculation C in Table 1) that the inclusion of all virtual orbitals 
influenced significantly only 2al state. This state is shifted by 0.8 eV closer to 
experiment. The effect on other states is negligible. This concerns only the total value 
of VIP's. The contributions to second and third order of perturbation theory taken 
separately are influenced more by the inclusion of all the virtual orbitals but there is a 
compensation effect (Ae (2) and A~ (3) a r e  of different sign). All the other conclusions 
are identical with those ofCederbaum et al. [8]. The inclusion of the second order of 
perturbation expansion is insufficient, it leads to overestimation of the correction. In 
some cases it gives even worse agreement with experiment than Koopmans '  
theorem. Inclusion of third order has a compensation effect and gives good 
agreement with experiment. For the sake of completeness we present also the 
calculations with double zeta basis (results D in Table 1). We see that for the H20  
molecule the effect of the basis is small at least for the first three VIP's which is the 
same as in 1-22]. The agreement with experiment is good. Here we have to stress that 
we have compared only the calculations up to third orders of both theories. 
Cederbaum et al. [8] did some infinite summation of some preselected diagrams 
which significantly improved the results. This can be done also in MB-RSPT and we 
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want to do this in our forthcoming paper. For  completeness we present in Table 3 
the individual contributions from different diagrams. 

In their calculation of the Ne atom Cederbaum and von Niessen [9] have included 
all 9 virtual orbitals to calculate the corrections to 2p Koopmans '  ionization 
potential up to third order. Corrections to ls and 2s Koopmans '  ionization 
potentials were calculated up to second order with some infinite summations. In 
Table 2 we present our calculations up to third order of MB-RSPT as compared to 
the work [9]. The results show good agreement with experiment for the 2p VIP. The 
others VIP's are not in such a good agreement with experiment. This is of course 
understandable because the [5s3p] basis does not include the orbitals with a higher 
angular momentum. Due to this fact any comparison with experiment is meaning- 
less. We can say that MB-RSPT improves Koopmans '  VIP's in a correct way. For 
the 2p VIP the results using Green's functions and MB-RSPT are essentially 
equivalent in the second plus third order. However, in the second and third orders, 
taken separately the differences between both calculations are rather large. To a 
lesser extent, this is found also in calculations of H20.  The similar effect of 
diagrammatic cancellation as in Green's function technique exists for the Ne atom 
as for the H20  molecule as can be seen from Table 3. 

Here we would like to make still a few comments to other methods which are used to 
calculate VIP's. The approach developed by Simons et al. [15-18] is based on the 
equation of motion method. They have developed the formulae for the electron 
affinities and ionization potentials calculations through third order in the electronic 
interaction. Simons et al. define the operator s (Eq. (2) in Ref. [ 18]) which generates 
in principle the exact eigenstate ]~u') of the positive ion when operating on the true 
neutral molecular ground state 17/). The operator ~ is defined in terms of creation 
and annihilation operators and the wave function of the ground state [qJ) of the 
parent system is chosen using the Rayleigh-Schr6dinger perturbation expansion. 
Due to this there exists close connection of this method with the Green's function 
approach and that based on MB-RSPT. Namely the form of the operator f2 is 
responsible for the fact that comparing the third orders of the equation of motion 
method and of MB-RSPT, we see that the third order of equation of motion method 
corresponds to infinite summation of some preselected diagrams which appear in 
MB-RSPT. To understand the connections of the equation of motion method with 
M B-RSPT to all orders the detailed analysis of the form of operator ~2 must be done. 
This problem is partly discussed in [37]. 

Chong et al. [21, 22] used the third order ordinary Rayleigh-Schr6dinger per- 
turbation theory to calculate VIP's. The ionization potential is calculated as a 
difference in the energy expectation values of the ionized and parent systems. In this 
approach we have to take care whether the wavefunction of the parent and ionized 
systems are of the same quality. Moreover, the advantage of MB-RSPT is also in the 
fact that we can use the effect of formal cancellation of those terms which contribute 
equally to the correlation energy of the parent and ionized systems to obtain the 
explicit formula for VIP's. To compare these two methods we have performed 
calculations of VIP's for the H20  molecule in double-zeta basis. The results are 
presented in Table 1 (results D). 
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As we have already said the diagrammatic approach gives us the "microscopic view" 
on the theory and we can see which diagrammatic contributions are dominant. We 
can try then to sum these contributions up to all orders of  perturbation theory. This 
we shall try to do in our next paper. 
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